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Abstract
Theories can be represented as statistical models for empirical testing. There is a vast literature on model
selection and multimodel inference that focuses on how to assess which statistical model, and therefore which
theory, best fits the available data. For example, given some data, one can compare models on various infor-
mation criterion or other fit statistics. However, what these indices fail to capture is the full range of counter-
factuals. That is, some models may fit the given data better not because they represent a more correct theory,
but simply because these models have more fit propensity—a tendency to fit a wider range of data, even non-
sensical data, better. Current approaches fall short in considering the principle of parsimony (Occam’s
Razor), often equating it with the number of model parameters. Here we offer a toolkit for researchers to bet-
ter study and understand parsimony through the fit propensity of structural equation models. We provide an
R package (ockhamSEM) built on the popular lavaan package. To illustrate the importance of evaluating fit
propensity, we use ockhamSEM to investigate the factor structure of the Rosenberg Self-Esteem Scale.

Translational Abstract
How should we assess which theory or model is correct in light of available data? One approach is to
use information criteria or other fit statistics to compare which model best fits the available data. But
this approach ignores parsimony. Some models may fit the given data better not because they represent
a more correct theory, but simply because these models have more fit propensity—a tendency to better
fit a wider range of data, even nonsensical data. Here we offer a toolkit for researchers to assess parsi-
mony through the fit propensity of structural equation models. We provide an R package (ockhamSEM)
built on the popular lavaan package. We illustrate the importance of evaluating fit propensity by using
ockhamSEM to investigate the factor structure of the Rosenberg Self-Esteem Scale.
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Theories, no matter how beautiful, live and die on the back of
data. Structural equation modeling offers a flexible framework for
statistically representing complex theories (Bollen & Pearl, 2013;
Grace & Bollen, 2008). Given a choice between two or more theo-
retically plausible structural equation models, the process of model
selection and multimodel inference (Burnham & Anderson, 2002)
typically involves asking which model is more consistent with the
available empirical data. For example, there are many instances in
psychological research where a broad (multifaceted) construct is

defined, a test is created, and further psychometric work indicates
that a multidimensional model fits better than a model that meas-
ures a single dimension. Some examples include the number and
configuration of possible method factors on scales that include
reverse-worded items (Reise et al., 2016) or whether a random
intercept model should be used to model acquiescence bias (Sava-
lei & Falk, 2014), the tradeoff between a correlated factor,
hierarchical factor, and bifactor models for constructs such as self-
compassion (Neff et al., 2017), alexithymia (Reise et al., 2013),
health outcomes (Reise et al., 2007), and so on. In all cases,
debates continue over which model is most correct. What is often
overlooked is the counterfactual—that a model may not fit the em-
pirical data better because it is a better description of reality, but
simply because it has a tendency to fit any data better. That is,
what is often overlooked is parsimony.

Occam’s razor, or the principle of parsimony, is familiar to most
scientists. As we teach our students: given the choice between two
equally fitting models, all else being equal it is generally preferable
to choose the simpler, or more parsimonious, model. What is less
well understood is how one might quantify parsimony. One pro-
mising approach is the concept of model fit propensity (Preacher,
2006) or complexity (Myung et al., 2005; Pitt et al., 2002). Here
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we will use fit propensity to avoid confusion with other uses of
the term complex. Fit propensity is sometimes described as the
“complement” of parsimony (Preacher, 2006, p. 230). The basic
idea behind fit propensity is that some models will simply do a bet-
ter job of fitting a wider range of data. These models are less parsi-
monious. Thus, the process of model selection needs to consider
not just model fit, but fit propensity. The ideal theoretically derived
model will have both better fit and lower fit propensity than a com-
peting model. But in practice, there is likely to be a tension between
fit and fit propensity. In other words, for a model to be both useful
and generalizable, a balance must be struck between fitting real
data, and parsimony in not also fitting random data (fit propensity
can be defined as the propensity to fit random data; Bonifay, 2015;
Cudeck & Browne, 1983; Marsh & Balla, 1994; Reise et al., 2013).
Parsimony is sometimes described as a function of degrees of

freedom. For example, Marsh and Balla (1994) defined parsimony
as “the ratio of degrees of freedom in the model being tested and
degrees of freedom in the null model” (James et al., 1982; Mulaik
et al., 1989, p. 188). It is thus tempting to equate parsimony with
the degrees of freedom of a model such that fewer estimated param-
eters (and higher df) corresponds to more parsimony. However, it is
possible to have models with the same number of estimated param-
eters, but where one has better propensity to fit random data (Boni-
fay & Cai, 2017; Preacher, 2006). Indeed, a model may even have
more estimated parameters than an alternative, but have lower fit
propensity and therefore more parsimony (Pearl & Verma, 1995).
The configuration of the model (number of latent factors, paths
among variables) and functional form of relationships among varia-
bles also affects fit propensity. In sum, prior research has identified
both the number of estimated parameters and the functional form or
configuration of the model as both contributing to fit propensity
(Myung et al., 2005; Preacher, 2006). Thus, fit indices that adjust
for degrees of freedom, such as Tucker-Lewis index (TLI; Tucker
& Lewis, 1973), comparative fit index (CFI; Bentler, 1990), and
root mean square error of approximation (RMSEA; Steiger & Lind,
1980) or commonly used information criterion, such as Akaike in-
formation criterion (AIC) and Bayesian information criterion (BIC)
that have adjustments based on the number of estimated parameters
are coarse in how they treat the role of fit propensity in model
selection.

Fit Propensity and the Rosenberg Self-Esteem Scale

To understand the importance of fit propensity, consider the
Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965). The RSES
is perhaps the most widely used self-report instrument for the mea-
surement of self-esteem. It contains 10 five-point Likert-type items.
The RSES is often used by applied researchers to represent a single
construct: self-esteem. Higher scores indicate higher self-esteem for
five positively keyed items (Items 1, 2, 4, 6, and 7), and five nega-
tively worded or reverse keyed items (Items 3, 5, 8, 9, and 10). The
RSES is regularly used, but is the subject of ongoing investigations
to examine the confirmatory factor analysis models that may repre-
sent it; a single factor model rarely fits RSES data adequately. In a
recent example, Donnellan et al. (2016) fit 10 different models to
RSES data (N = 1,127). Of these, three models stood out as having
superior fit: (a) a global factor with correlated residuals among
positively and negatively worded items;1 (b) a bifactor model with
method factors for positively and negatively worded items; and (c)

the same bifactor model, but with correlated method factors (see
Figure 1). For illustration, we replicated the original analyses using
lavaan (Rosseel, 2012), and results for these models and a single
factor model are presented in Table 1.2

On the one hand, such well-fitting models may make intuitive
sense. All three models account for additional dependencies beyond
a single factor, and may be appropriate to the extent that positively
worded items share some dependency, as do negatively worded
items. On the other hand, one might question whether these models
fit for other reasons. Are they parsimonious? The correlated residual

Figure 1
Rosenberg Self-Esteem Models

1With one residual fixed to zero for identification.
2 To account for ordered categorical data, maximum likelihood with

robust corrections (i.e., estimator = “MLR”) was employed here and in the
original paper.
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model essentially accomplishes a similar task as the bifactor model
in modeling dependencies among similar items, but does so with
even more additional model parameters. Does this come with a cost
to fit propensity? Indeed, from a traditional standpoint, these mod-
els have the most estimated parameters of all 10 models examined:
39, 30, and 31, respectively, with only 20 for the single factor
model. The original article primarily considered aforementioned fit
indices that make adjustments based on degrees of freedom or the
number of estimated parameters: TLI, CFI, RMSEA, AIC, and
BIC. The only other information regarding model fit are the chi-
square test of fit, and root mean square residuals (RMSR)—a trans-
formation of the difference between sample covariances and recov-
ery of covariances by the model. In all cases, there is either no
adjustment for parsimony or only a coarse-grained adjustment for
degrees of freedom.
Bonifay et al. (2017) argued that the bifactor model may be good

at fitting random noise—that it lacks parsimony. For instance, Boni-
fay and Cai (2017) found that a bifactor model with two uncorre-
lated method factors had higher fit propensity in general than two
hierarchical models with discrete latent variables with the same
number of parameters. In also examining the RSES, Reise et al.
(2016) found that the bifactor model with uncorrelated method fac-
tors helped explain inconsistent response patterns, but that a single
factor model was sufficient for the majority of participants. Note
that the fit propensity of the additional models considered by Don-
nellan et al. (2016) have not been studied. One might then also
wonder–how much more fit propensity does a correlated residual
model have above and beyond a bifactor model? Or, does adding a
single correlation among method factors substantially change fit
propensity? How does the fit propensity of such models compare to
a single factor model? Does fit propensity correlate with number of
parameters? Is it possible that such models tend to fit the data well,
not because they are close approximations of reality, but that such
models tend to fit any data, even random data, very well? And even
more broadly, does relative fit propensity depend on which fit index
is examined?

Testing Fit Propensity

The types of questions we ask above provide clues about parsi-
mony that are not easily answered by number of parameters or tra-
ditional fit indices. They can, however, be understood through a
study of fit propensity.3 A popular method of studying fit propensity
requires repeated generation of random data from a data space and
fitting the models of interest (Preacher, 2006). Information regard-
ing model fit can then be recorded over a large number of replica-
tions and summarized to provide a sense of how well the models fit
such random data. Preacher (2006) introduced the concept of fit

propensity to structural equation modeling (SEM) over a decade
ago. Further research has been limited, perhaps in part due to a lack
of easy to use and efficient software tools for evaluating fit propen-
sity. Preacher’s (2003) original code was written in FORTRAN and
had a few limitations, such as a Markov chain Monte Carlo
(MCMC) algorithm that took a long time to generate random corre-
lation matrices, restriction to only positive correlations, use of a
lesser-known software program for fitting models (RAMONA 4.0
for DOS; Browne & Mels, 1990 as cited in Preacher, 2006), and
support for few fit indices (only RMSR was studied).4

We aim to support further researchers in considering fit propen-
sity of their models by providing an R package: ockhamSEM. The
ockhamSEM package offers easy-to-use and highly flexible soft-
ware built on the popular lavaan (Rosseel, 2012) package. We hope
that ockhamSEM will be used for the study of fit propensity by
applied researchers investigating models of interest, for classroom
demonstrations, or the further study of fit propensity itself and
related methodological challenges by quantitative methodologists.

Investigating fit propensity requires generating random correla-
tion matrices, which are computationally intensive. The ockham-
SEM package provides several innovations in terms of both
computational efficiency and the reporting of fit propensity. In par-
ticular, random correlation matrices can be generated using the
onion method by Lewandowski et al. (2009), as well as Preacher’s
(2006) original MCMC algorithm. The onion method exploits
known properties of elliptically contoured distributions applied to
a k-dimensional hypersphere to provide a space of correlation mat-
rices that can be sampled. This sampling results in the generation
of correlation matrices much faster than the MCMC method,
which involves iteratively generated random draws, where as with
many MCMC methods, most are discarded. Using the onion
method, thousands of large correlation matrices can be generated
in seconds. We discuss these methods in further detail with addi-
tional resources in the Appendix.

Calculations can be performed in parallel using the multiple
processing cores common in modern personal computers and com-
puting clusters. Random correlation matrices can be restricted to
all positive correlations, or both positive and negative correlations
(indeed, other arbitrary restrictions can also be implemented). We
also provide support for the full range of fit indices available from

Table 1
Rosenberg Self-Esteem Model Fit

Model v2 df TLI CFI RMSEA AIC BIC SIC RMSR

1. Correlated residual 60.59 16 0.97 0.99 0.05 26,343 26,589 26,621 0.02
2. Bifactor 154.88 25 0.94 0.97 0.07 26,437 26,638 26,652 0.03
3. Correlated bifactor 135.09 24 0.95 0.97 0.06 26,413 26,619 26,632 0.02
4. Single factor 872.91 35 0.72 0.78 0.15 27,346 27,497 27,508 0.08

Note. TLI = Tucker-Lewis index; CFI = comparative fit index; RMSEA = root mean square error of approximation; AIC = Akaike information criterion;
BIC = Bayesian information criterion; SIC = stochastic information complexity; RMSR = root mean square residuals.

3 In our replication, an additional fit index, stochastic information
complexity (SIC; Hansen & Yu, 2001), is reported and that could be used
for adjustment of model fit that is more in line with fit propensity (Bonifay
& Cai, 2017; Preacher, 2006), but as we discuss later in this article, does
not immediately provide intuitive information regarding fit propensity.

4We thank Kris Preacher for graciously providing us this FORTRAN
code, which also appears in his dissertation.
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lavaan. Finally, additional numerical and graphical summaries are
provided, going beyond those originally presented by Preacher
(2006).
Our work is related to some recent research on fit propensity

and model similarity. In particular, Bonifay and Cai (2017)
describe methods for studying the fit propensity of item response
models with categorical observed variables. Given the unification
of item response models and SEM under a unified latent variable
modeling framework (e.g., Skrondal & Rabe-Hesketh, 2004), this
work is related to the present research. However, it does not
address continuous observed variables and none of the underlying
code was provided. We take the “ameoba” plots presented by
Bonifay and Cai (2017) as inspiration for some visualizations we
present later in this article. In addition, Lai et al. (2017) address
methods for examining model similarity using mostly scatter plots
and line graphs of fit indices, and may be helpful for visualizing
whether some models are equivalent or nested (but see Bentler &
Satorra, 2010). These authors mention difficulty in generating data
from random correlation matrices, and instead opt for data genera-
tion from a restricted space that is a mixture of the correlation mat-
rices implied by two competing models. Thus, model similarity
rather than fit propensity was the main focus of this previous
work.
This article is organized into the following sections. The first

section provides a brief description of our implementation of the R
code. We then illustrate concepts of fit propensity and basic fea-
tures of the code in the context of several initial examples from
Preacher (2006), and the RSES example. Finally, we conclude
with a discussion of additional innovations and alternative ways to
compare models.

Illustrative Examples

We present three examples to illustrate the basic procedure and
concepts used to study fit propensity, including visualization and
summaries of results (see Table 2). The first two examples expand
upon those initially presented by Preacher (2006). We note that
while the general pattern of results remains similar in our imple-
mentation, there may be minor discrepancies for a number of rea-
sons.5 The final example concentrates on the debate around the
RSES and what a study of fit propensity can provide. The first
example is fully illustrated in-text with complete R code. The code
for additional examples is available in the online supplementary
materials.

Example A: Fit Propensity Basics

We will use the two 3-variable models depicted in Figure 2 as
our first example (see also Preacher, 2006, p. 228). In Model 1A,
V3 is regressed on V1 and V2, with the covariance among V1 and
V2 restricted to zero. Model 2A represents a causal chain in which
V2 is regressed on V3, which is in turn regressed on V1, yet there is
no direct path from V1 to V2. These have the same number of esti-
mated parameters (five) and do not represent equivalent models,
despite the only difference being the direction of the relationship
between V2 and V3. The study of fit propensity is well suited for
answering which model has a tendency to yield better fit. Although
these models may seem trivially simple, the answer to this ques-
tion is not so easy to see without the additional work we present
below.

General Procedure and Code

The procedure to study fit propensity that we illustrate here fol-
lows several steps:

1. Definition of the model(s) of interest.
2. Generation of n random correlation matrices.
3. Fitting the models of interest to the n random correlation

matrices.
4. Recording information regarding model fit for each model

and correlation matrix.
5. Summaries of model fit using text, graphical displays, and

measures of effect size (e.g., Komolgorov-Smirnov).
The core custom code used in this paper are included in the

ockhamSEM package.6 Underlying innovations and the methods
for generating random correlation matrices are discussed in the
Appendix. The package can be loaded with the following R code
snippet:

library(ockhamSEM)
library(parallel)

Table 2
Overview of Examples

Example # Models Model description Main purpose/illustrated features

A 2 Two 3-variable models Basic use of code, algorithms for correlation matrix
generation, parallel processing, equal df models,
empirical ECDF plots, quantiles

B 2 Factor and simplex models Positive vs. negative correlations, equal df models,
model convergence

C 4 Four RSES models Other fit indices (CFI, RMSEA, TLI), Euler plots,
saving of correlation matrices and fitted models

Note. TLI = Tucker-Lewis index; CFI = comparative fit index; RMSEA = root mean square error of approximation;
RSES = Rosenberg Self-Esteem Scale; ECDF = empirical cumulative distribution function.

5 Different SEM program with different default estimation options,
different handling of nonconverging models (lavaan does not allow
calculation of some fit indices), etc. Preacher (2006) also used ordinary
least squares for estimation, whereas we used maximum likelihood. For
this paper, we used lavaan version 0.6-5 and R version 3.6.0.

6 https://github.com/falkcarl/ockhamSEM.
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Step 1

First use lavaan model syntax to define Model 1 and Model 2:

mod1a,- ’V3� V1þ V2
V1�� 0*V2’

mod2a,- ’V3� V1
V2� V3’

Next, two models are fit to data. We expect that this will be the
most typical use of studies of fit propensity for applied researchers—
two or more substantive models are of interest in particular,
because of debates over which is most appropriate for real data. We
simply require a fitted lavaan model using data that has the same
variable names (V1 through V3 in this case) as the above syntax
indicates. Alternatively, we may fit the data to some covariance ma-
trix. The following uses the latter strategy in creating an identity
matrix:7

p,-3 # number of variables
temp_mat,- diag(p) # identity matrix

# set row and column names
colnames(temp_mat),- paste0(“V", seq(1, p))
rownames(temp_mat),- paste0(“V", seq(1, p))

We then fit the two models using the sem function from the
lavaan package, though note that any function that returns a fit-
ted model of class lavaan could be used, such as the cfa, sem, or
lavaan functions:

mod1a.fit,- sem(mod1a, sample.cov=temp_mat,
sample.nobs = 500)

mod2a.fit,- sem(mod2a, sample.cov=temp_mat,
sample.nobs = 500)

At this step, any special options regarding estimation can be
passed to sem. Our later code will attempt to use these options
when fitting models for investigating fit propensity. For instance,
here we specify a particular number of observations for this data
(sample.nobs = 500), although for many fit indices of interest
this information is inconsequential. One may ask lavaan to mimic
a different SEM program, use normal theory or Wishart likelihood,
use a different optimizer, change the iteration limit for estimation,
scale sample covariance matrices by ðN � 1Þ=N, and so on (see
help(lavOptions)). As long as any of these options are
implemented when defining and fitting initial models, they will be

used when the models are fit to randomly generated correlation
matrices. However, the ability to do so-called robust corrections or
use any estimation approach that requires raw data or a mean
structure is not supported; the available options currently must
work for model fitting when analyzing only a covariance matrix as
input.

Steps 2 Through 4

Generation of random correlation matrices, fitting models to
such matrices, and recording model fit are all accomplished by the
run.fitprop function in the next code snippet:

res.on,- run.fitprop(mod1a.fit, mod2a.fit,
fit.measure="srmr", rmethod="onion",
reps=5000,onlypos=TRUE)

The initial arguments to this function are any number of fitted
lavaan models, such as mod1a.fit and mod2a.fit. The remain-
ing arguments must be named and are only required for taking
explicit control over correlation matrix generation and saving of
output. The fit.measure argument accepts a character vector
that indicates what fit indices will be saved. Anything that matches
named output from the fitMeasures command from lavaan

can be used. Users are encouraged to run this command on already
fitted models to see what available fit indices are possible (e.g.,
fitMeasures(mod1a.fit)). Here, we save only standardized
root-mean-square residual, as indicated by “srmr,” which in this
case is equivalent to RMSR, because analyzed correlation matrices
will already be standardized. RMSR is the fit index primarily stud-
ied by Preacher (2006) in his work on fit propensity as it provides
a sense of model fit, unadjusted for the number of estimated pa-
rameters. We generate random correlation matrices using the on-
ion method (rmethod=”onion”), requesting 5,000 replications
(reps=5000), and restricting to only positive correlations
(onlypos=TRUE).

The result of the run.fitprop command in the code above is
saved to res.on which is an object of class fitprop with sev-
eral options regarding output that will be illustrated shortly. Before
we proceed, suppose we wished to see whether results differ if we
had instead used the MCMC algorithm to generate random corre-
lation matrices. This latter approach should provide replication of

Figure 2
Two 3-Variable Models

7 Another viable alternative involves generating data from the true
models for 1A and 2A, such as with lavaan’s simulateData function.
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Preacher (2006), but may be computationally slow. In this case,
we may wish to use parallel processing for faster computations:

cl,- makeCluster(8)
res.mcmc,- run.fitprop(mod1a.fit,mod2a.fit,

fit.measure=“srmr”, rmethod = “mcmc”,
reps = 5000, onlypos=TRUE, cluster=cl)

stopCluster(cl)

We create a cluster with 8 processing cores with the make-
Cluster command. The result, cl, is then passed to the run.
fitprop function using the cluster argument. The change in rme-
thod to “mcmc” will result in use of the MCMC algorithm for
correlation matrix generation. Finally, we shut down the cluster
using the stopCluster command after we obtain the results.

Step 5

There are multiple different ways to then summarize results.
Preacher (2006) primarily focused on empirical cumulative distribu-
tion function (ECDF) plots that we also illustrate here andwill describe
shortly. In particular, both res.on and res.mcmc are objects of
class fitprop for which we have defined a default plot function. This
allows us to simply use the plot command successively in order to
generate ECDF plots (see Figure 3) of the requested fit indices and
model(s):

plot(res.on)
plot(res.mcmc)

The argument savePlot=TRUE can also be specified and the
result will be a list of ggplot objects containing ECDF plots cor-
responding to each fit index. This feature is useful if, for example,
the user wishes to modify the legend, title, and so forth, of the
resulting plot or otherwise customize output:8 For convenience, sev-
eral additional options can be defined, such as to add custom names
(mod.lab) for the two (or more) fitted models and the color pal-
ette used by RColorBrewer (Neuwirth, 2014).

plot1,-plot(res.on, savePlot=TRUE,
mod.lab=c(“model 1A”,“model 2A”),
mod.brewer.pal=“Set1”)

plot2,-plot(res.mcmc, savePlot=TRUE,
mod.lab=c(“model 1A”,“model 2A”),
mod.brewer.pal=“Set1”)

To explain ECDFs and Figure 3, suppose we collect all RMSR
estimates for the 5,000 fitted models for Model 1A. We then sort
these 5,000 estimates in order from lowest to highest. Next, we
count the number of RMSR estimates at or below a particular
value. For example, “what proportion of fitted models have an
RMSR value of .25 or lower? .5 or lower?” Each curve in Figure 3
displays the answer to this question for each model separately and
at many values of RMSR along the x-axis such that the lines
appear to be continuous. For example, Model 2A had approxi-
mately 75% (or .75 as a proportion) of models that had an RMSR
(or srmr) of .25 or better when correlation matrices were generated
using the MCMC algorithm (see where .25 on the x-axis intersects
with the dotted blue line on the left-hand panel). Model 1A had a
smaller proportion (around .57 or so) of cases with an RMSR of
.25 or better. This implies that the higher curve (for Model 2A)

indicates better fit for more models, and therefore more fit propen-
sity when examining RMSR.

For the most part, the results displayed here replicate those of
Preacher (2006): model 2A appears to have more fit propensity in
that there is a higher proportion of RMSR values that are relatively
small, and this result tends to hold for both MCMC and Onion
methods. Had either correlation matrix generating method allowed
for both positive and negative correlations, the basic pattern in fit
propensity regarding Models 1A and 2A would have been similar
and the interested reader is encouraged to verify this assertion.

Default print and summary methods are also available for
fitprop objects. summary will provide some diagnostic informa-
tion regarding whether any nonconvergent models were encoun-
tered, selected quantiles of the resulting fit statistics, and effect
sizes to help quantify the differences in fit between estimated mod-
els. For example, instead of eyeballing Figure 3, we can ask for
the value of srmr that corresponds to a cumulative proportion of
.25, .5, and .75 for both models using the following:

summary(res.mcmc, probs=c(.25,.5,.75))
##
## Quantiles for each model and fit measure:
##
## Model 1
## srmr
## 25% 0.134
## 50% 0.229
## 75% 0.330
##
## Model 2
## srmr
## 25% 0.047
## 50% 0.105
## 75% 0.187
##
## Information about replications for each

model and fit measure:
##
## Model 1
##
## Mean across replications
## srmr
## 0.298
##
## Median across replications
## srmr
## 0.229
##
## Number of finite values
## srmr
## 5000
##
## Number of NA values
## srmr
## 0
##
## Model 2

8Which is how we added all of the plot titles, combined multiple plots
into a single figure, customized axis dimensions and labels, and so on in the
present article.
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##
## Mean across replications
## srmr
## 0.123
##
## Median across replications
## srmr
## 0.105
##
## Number of finite values
## srmr
## 5000
##
## Number of NA values
## srmr
## 0
##
## Effect sizes for differences in model fit:
##
## srmr
##
## Model 1 versus Model 2
## Cohen’s d: 0.607
## Cliff’s delta: 0.512
## Komolgorov Smirnov: 0.374

These results tell a similar story to the graphical summaries pro-
vided. For example, 50% of Model 1A results had an RSMR of
.229 or lower, whereas 50% of Model 2A had an RSMR of .105 or
lower. Alternatively, one may examine the mean or median values
for RMSR. We also see that there were apparently no models
where nonconvergence was a problem, because there are no NA
values for any srmr estimates.
At the end of the output, differences between all estimated models

and all recorded fit indices are quantified using three effect sizes:
Cohen’s d (Cohen, 1988), Cliff’s delta (Cliff, 1996), and a Komol-
gorov-Smirnov coefficient (K-S). Although additional effect sizes
could be easily added, we initially chose these three for several

reasons. First, Cohen’s d is likely familiar to many researchers in the
social sciences. Here, we see that a value of .61 is observed, which is
typically considered as between a “medium” and “large” effect size
in research settings. Here it is indicating that Model 1A’s distribution
for RMSR is on average .61 SD higher than Model 2A. Cohen’s d
has a nice conceptual interpretation as the number of standard devia-
tion units that separate the RMSR distributions for Models 1A and
2A. Because Cohen’s d is typically not considered a robust effect
size measure (e.g., Wilcox, 2012), we included Cliff’s delta, which is
robust to outliers and skewness, and K-S as additionally sensitive to
variability across two distributions. These may be more unfamiliar to
researchers.

Conceptually, Cliff’s delta is a difference between two probabil-
ities: (a) the probability that a value in the first distribution is greater
than that in the second; and (b) the probability that a value in the
second distribution is greater than that in the first. It is computed in
part by comparing each observation from one distribution versus all
observations in a second distribution. Cliff’s delta ranges between
�1 and 1, with values close to zero indicating no difference
between two distributions. The K-S coefficient is the maximum dif-
ference between two ECDFs over all cumulative probabilities of
some measure (in our case, a given fit index). Therefore, as ECDFs
also are bound between 0 and 1, K-S ranges between 0 and 1, with
1 indicating a larger discrepancy between two distributions.9 To our
knowledge, there are no accepted guidelines for Cliff’s delta or the
K-S statistic equivalent to “small,” “medium,” and “large” for
Cohen’s d, in part because the statistics are readily interpretable.
For example, in the output above, the difference in probabilities is
51.2% with values tending to be higher in Model 1, and the largest
discrepancy in ECDFs is .374.

Figure 3
ECDF Plots Comparing Fit Propensity of Models 1A and 2A

Note. ECDF = empirical cumulative distribution function; MCMC = Markov chain Monte Carlo. See the
online article for the color version of this figure.

9 Although K-S could also yield a p-value, this value would largely be
dependent on the number of replications chosen for the fit propensity
analysis.
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Example B: Simplex Model Versus Factor Model

Next, we extend an example given by Preacher (2006) in which
we compare a simplex model (1B) with a single factor model with
a loading equality constraint for the second and third loadings (2B;
Figure 4).
Although it seems unlikely that researchers would consider

these two alternative models for the same dataset, they have the
same degrees of freedom and will yield different fit propensity.
Furthermore, these examples are useful for demonstrating the
impact of a restriction on the data space. In particular, we com-
pared the fit propensity using srmr for these two models by cross-
ing two conditions: Correlation matrix generation (MCMC vs.
onion) and positivity of correlations (all positive vs. positive and
negative). The option for obtaining both positive and negative cor-
relations can be achieved by setting onlypos=FALSE when
using the run.fitprop command.10

Here, we see that the restriction of the data space to only posi-
tive correlations makes a substantial difference, yet also note that
Preacher (2006) only examined positive correlations. The factor
model (2B) generally has more fit propensity than the simplex
model (1B) if only positive correlations are considered as shown
in the two plots on the left-hand side of Figure 5. However, the fit
propensity for the factor model is lower if we consider the possi-
bility that the data space may include both positive and negative
correlations as shown on the right-hand side of Figure 5. In retro-
spect, this makes intuitive sense given that the second and third

loadings of the factor model are constrained equal. At minimum,
such a restriction would likely only make sense if the correlations
among these two items have the same sign. For example, if it were
the case that Item 2 tended to have negative correlations with other
items, but Item 3 had positive correlations, the two loadings would
seem to have opposite signs. Model fit would then deteriorate due
in part to constraining these loading estimates to be equal.

We also note that substantial estimation problems were encoun-
tered when the correlation matrices included both positive and
negative values. In particular, 2,462 models failed to converge for
the factor model when negative correlations were allowed for the
onion method, but zero and 16 failed to converge for the MCMC
and onion (only positive) conditions, respectively. Such conver-
gence failures are indicated as NA values for particular fit indices.
Such information regarding the number of valid replications is
available via the summary command.

The above plots and summary information are based on replica-
tions where both models converged as this is the default behavior.
We can, however, change output so that results are based on the
available number of replications for either model, regardless of
whether the replications are the same by setting samereps=FALSE
when using the plot command (For example, summary(res.mcmc,
samereps=FALSE)). Thus, the quantiles and plots for Model

Figure 4
Simplex and Constrained Factor Analysis Model

10 R code for this and for all following examples appears in the online
supplementary materials.
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1B could be based on a slightly different subset of random correla-
tion matrices than Model 2B. However, this does not appear to
substantially change the resulting plots or summary information,
and the interested reader is encouraged to verify this observation.

Models for the Rosenberg Self-Esteem Scale

In our final example, we return to the debate regarding an
appropriate model for the RSES. In particular, we investigated the
fit propensity of the four models considered in Table 1. For refer-
ence, we label these as follows: correlated residuals (Model 1C),
bifactor (Model 2C), bifactor with correlated method factors
(Model 3C), and a single factor model (Model 4C). Due to more
models and the possibility of nonconvergence, we increased the
number of replications to 10,000. As the RSES items typically
intercorrelate positively (after reverse-coding), we used the onion
method with only positive correlations. For fit indices, we addi-
tionally demonstrate the performance of TLI, CFI, RMSEA, and
RMSR. The model chi-square is also saved to later check model
nesting.
Since information is saved from four fit indices (TLI, RMSR,

CFI, RMSEA) and the model chi-square test of fit, we illustrate
two additional options for aiding in generating plots. First, we can
either obtain plots for all fit indices (the default behavior), or
request plots just for a particular fit index by passing the which-
fit argument to the plot function. whichfit accepts a character
vector in the same fashion as fit.measure (resulting in plots for
selected fit indices being displayed successively), or may be left at

its default setting (successively showing plots for all saved fit
indices).

Second, an additional argument can be changed to aid in inter-
preting TLI and CFI. Note that lower values of RMSR typically
indicate better fit, but higher values of TLI and CFI correspond
to better fit. The lower.tail argument accepts a logical vector
of the same length as the number of stored fit indices (i.e., the
same length as fit.measure). By default, the vector sets
all elements to TRUE. Setting the corresponding element to
FALSE for CFI ensures that the ECDF plots start with higher
numbers on the left-hand side of the x-axis, making interpre-
tation of such plots visually similar to those for RMSR. In the fol-
lowing code snippet, assuming results are stored in res.rses
we only plot results for TLI, CFI, RMSEA and RMSR, and we
make the above corresponding changes for the ECDF plot for TLI
and CFI.

plot(res.rses, whichfit=c(“tli”,“cfi”,
“rmsea”,“srmr”),
lower.tail=c(FALSE,FALSE,TRUE,TRUE))

We next examine each fit index separately (see Figure 6). CFI is
perhaps the easiest to interpret, yet also raises the most concerns
about its use as a measure of model fit. In particular, very clearly
the four models are ordered in terms of the number of estimated
parameters, with models with fewer degrees of freedom (more
estimated parameters) having more fit propensity according to
CFI. This is intuitive to the extent that more parameters leads to
better fit. However, this is concerning since the data are random

Figure 5
ECDF Plots Comparing Fit Propensity of Models 1B and 2B

Note. ECDF = empirical cumulative distribution function; MCMC = Markov chain Monte Carlo. See the
online article for the color version of this figure.
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and CFI should include an adjustment for parsimony. That is, the
adjustment included in CFI does not appear to equate the fit of the
resulting models. Even for some nontrivial percentage of replica-
tions, CFI even exceeds .80 or so (e.g., CFI averages around .79
for the correlated residual model). This large percentage of models
that have good fit for random data should be concerning to
researchers using CFI.
TLI and RMSEA tend to have similar patterns of results to each

other. Almost no replications are in the range of what is usually con-
sidered acceptable fit, and models are ordered in a nonintuitive way:
The bifactor model with correlated method factors had the highest
fit propensity, followed by the bifactor model, correlated residual
model, and finally the one factor model. Thus, the ordering of fit
propensity is not in line with the df or number of estimated parame-
ters in that the correlated residual model did not have the highest fit
propensity.
Differences among the models are also more difficult to detect

visually. Additionally, effect sizes for the differences across these
distributions also tends to be smaller. For example, K-S yields val-
ues between .11 and .40 for all pairwise differences for RMSEA.
For RMSR, the bifactor model with correlated method factors
yielded the highest fit propensity with the other models mixed. For
instance, the difference between the bifactor model and the corre-
lated residual is negligible (Cliff’s d = .05, K-S = .11). However,

we may also raise some concerns about the utility of RMSR for
these studied models. For instance, many RMSR estimates were
below .1, with a full 60% of the correlated bifactor models below
this threshold.

Euler plots can further aid in helping visualize relative fit of the
models for the same randomly generated correlation matrices and
are similar to Venn diagrams. These are inspired by the “ameoba”
plots of Bonifay and Cai (2017). In Euler plots, the area of each
circle (or ellipse) is proportional to the number of cases that meet
some criteria. Overlap among circles indicates overlap in the sets
of correlation matrices that meet this criteria.11

Take for example, TLI. The ECDF plot seems to indicate that
the correlated bifactor model had about 50% of replications with a
TLI of .5 or better, whereas the single factor model had only about
8% of replications with a TLI of .5 or better. But, does the corre-
lated bifactor model always fit better according to TLI? In other
words, consider the entire set of correlation matrices that had TLI
of .5 or better for the correlated bifactor model and the set of cor-
relation matrices that had TLI of .5 or better for the single factor
model. Are there some replications where the single factor model
had a TLI better than .5, but the correlated bifactor model did not?

Figure 6
ECDF Plots Comparing Fit Propensity of Models 1C, 2C, 3C, and 4C

Note. ECDF = empirical cumulative distribution function; TLI = Tucker-Lewis index; CFI = comparative fit index; RMSEA =
root mean square error of approximation. See the online article for the color version of this figure.

11 Code using nVennR for generating plots is also currently in
development.
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This information regarding overlapping sets of replications that
meet this TLI criterion is depicted in a Euler plot:

plot(res.rses,type="euler",whichfit="tli”,
whichmod=c(3,4),cutoff=.5,
lower.tail=FALSE)

Figure 7 was generated with the above code. Larger ellipses are
conceptually similar to occupation of a wider area of the data
space, or more fit propensity, and directly represent the proportion
of correlation matrices for each model where TLI was better than
.5. Here we see that the correlated bifactor model takes up the
most space relative to the single factor model, indicating that it
had a higher proportion of cases with TLI of .5 or better. If one
model always fits better than another, we would expect that the
worse fitting model would be completely contained within the bet-
ter fitting model’s ellipse. Such a case would indicate that the
entire set of replications that met the TLI $ .5 criterion for the
lesser fitting model was also met by the better fitting model. That
each model has some part of the ellipse that is not covered by the
other suggests that there are some replications where each model
fits better than the others. Here we see that the single factor model
is not completely contained within the correlated bifactor’s space.
This means that there are some correlation matrices for which the
single factor model has TLI better than .5, but the bifactor model
does not have TLI better than .5. In other words, there are some
correlation matrices for which the single factor model has better
TLI than the correlated bifactor model.
Although one might be under the impression that models with

more factors should always fit better than a single factor model,
this result typically applies to the chi-square test of fit and to the
case of nested models. We can, however, directly check to see if

the 1-factor model is nested with a correlated bifactor model by
also examining Euler plots for the chi-square test of model fit (see
Figure 8). Here, we used a cutoff value of v2 = 3,000. The single
factor model has no unique set that is not completely encompassed
by the correlated bifactor model. In other words, there do not
appear to be any single factor models that are better than v2 =
3,000 but for which a correlated bifactor model is not as good.
These results are what we would expect with a unidimensional
model being nested with the correlated bifactor model.12

Finally, SIC as reported in Table 1 has been suggested by others
(Bonifay & Cai, 2017; see also Hansen & Yu, 2001; Preacher,
2006) as a computationally feasible index that is similar to AIC and
BIC, but may make a more fine-grained adjustment than that based
on the number of estimated parameters.13 In this particular case,
SIC suggests the same ordering of model fit, and therefore the same
selected model, as these other more traditional indices. While sem-
Tools (Jorgensen et al., 2019) now provides computation of SIC
from fitted lavaan models, we note that SIC does not immediately
provide us with the useful information regarding fit propensity and
other fit indices that may be of interest. The method of studying fit

Figure 7
Euler Plot for TLI at Cutoff = .5

Note. TLI = Tucker-Lewis index. See the online article for the color
version of this figure.

Figure 8
Euler Plot for Chi-Square Test at Cutoff = 3,000

Note. See the online article for the color version of this figure.

12 As a small aside, proper examination of model nesting is contingent
upon good starting values and successful estimation. For example, lavaan’s
defaults for starting values can sometimes converge on a local optimum
and thereby yield a higher chi-square value even for a more general model.
Should the researcher wish to examine particular replications, randomly
generated correlation matrices and fitted models can be saved as lists to the
res.rses object.

13 Like AIC and BIC, SIC is computed in part from the negative log-
likelihood, but makes an adjustment based on the log of the determinant of
the information matrix for the item parameters. Thus, more parameters may
lead to a greater adjustment, but to the extent that parameter estimates are
asymptotically correlated the adjustment may be less.
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propensity that we have discussed thus far also allows restriction of
the data space, which is also not possible with SIC.

Discussion and Conclusion

SEMs are a flexible method for representing complex theories, a
useful tool in moving toward a formal theoretical approach to the
psychological sciences (Muthukrishna & Henrich, 2019). But in eval-
uating competing theories instantiated as different SEMs, researchers
need to consider not only the fit of their models to the data, but the
parsimony of that fit. Fit propensity is therefore an important consid-
eration in evaluating the relative merit of competing theories.
We introduce and investigate fit propensity using several exam-

ples, including investigation of the Rosenberg Self Esteem Scale.
These investigations reveal important caveats in evaluating model
fit and multimodel inference. First, they make clear that model fit
alone is not sufficient to select between competing models—fit pro-
pensity also needs to be considered. Second, they reveal that fit
indices, particularly RMSR and CFI, evaluated in isolation can be
misleading. For example, in the RSES example, CFI was found to
have decent for fit for a large percentage of random correlation mat-
rices—as high as 80% in some cases. Finally, this investigation pro-
vides a replication of Preacher’s (2006) original findings regarding
fit propensity, extending these beyond positive correlation matrices.
These examples also illustrate the usefulness of the ockhamSEM
package. The package is intended to support researchers in consid-
ering the fit propensity of their SEMs, but also support applied
researchers and methodologists in further investigating fit propen-
sity itself and refining methods for evaluating fit propensity.
Several challenges remain that we hope will be addressed by

methodological researchers. One practical avenue for refinement is
computational complexity. In Preacher’s (2006) original code gener-
ating random correlation matrices was a significant computational
bottleneck. We solved this problem by using the onion method (Joe,
2006; Lewandowski et al., 2009). Model fitting, however, remains
computationally intensive, and this problem increases with more var-
iables. Models with more variables may also encounter more estima-
tion problems. Some avenues for solving this problem include
integrating our R code with a structural equation modeling program
that might fit models faster (e.g., Bentler, 2006; Muthén & Muthén,
1998–2010; Neale et al., 2016). OpenMx may be the most promising
alternative as it also allows access to optimizers that better overcome
local optimum or automate attempts at different starting values.
Another important area of further research is constraints on the

space of data. Example B reveals how restricting the data space to
only positive correlations versus allowing positive and negative cor-
relations can affect fit propensity. Ideally the data space could be re-
stricted based on the universe of possible data for a particular
research question. In future research, we hope to investigate the gen-
eration of random correlation matrices from specific data spaces for a
fixed number of factors (where the number of factors is less than the
number of items), or from the entire data space under a particular the-
oretical model of interest. Lai et al. (2017) provided an initial attempt
at something similar, but their approach is not guaranteed to generate
uniformly from the entire data space under any given model. Addi-
tional tuning parameters are available under Lewandowski et al.
(2009), but are challenging to translate for the applied researcher.
As our illustrations reveal, fit propensity and number of parame-

ters should be interpreted independently when assessing parsimony.

Researchers can only attribute the difference in fit propensity to
model specification, or make general statements about types of
model specifications and their relative fit propensity when number
of parameters are the same. For instance, Examples A and B illus-
trate cases where fit propensity is different even though competing
models have the same number of estimated parameters. This will of
course not always be the case in the real world, for example, when
assessing two theoretically derived model specifications, as is the
case with the final RSES example. Assessing fit propensity gives us
another tool for claiming parsimony, even making the case for a
model not only having fewer parameters, but also higher fit propen-
sity (Bonifay & Cai, 2017; Pearl & Verma, 1995). For example, for
some indices, the most unrestricted RSES model did not have the
highest fit propensity. It is also not easy to separate the effects on fit
propensity due to the number of estimated parameters from the con-
figural (or functional) form of the model. For instance, even though
TLI, CFI, and RMSEA make some adjustment for df, they yielded
different conclusions in the RSES example.

Beyond this tutorial, some researchers may desire additional
reading on the background literature that gave rise to fit propensity
and its relation to other fields. To briefly elaborate, the minimum
description length (MDL; Rissanen, 1978) principle is one key
concept in information theoretic perspectives regarding model fit
(e.g., see Bonifay, 2015) and is often used in cognitive, computer
science, and machine learning. MDL considers the data to be com-
posed of both noisy and systematic components. The goal is often
to find a way to encode the systematic part in such a way that both
systematic (i.e., model) and noisy parts (i.e., remaining error) can
be most concisely encoded. Thus, MDL formalizes Occam’s razor
and the tradeoff between a complicated model (i.e., not concisely
describing the systematic part) and poor model fit (i.e., too much
remaining error to describe). Importantly, the MDL perspective
does not require that there is a “true” population model. However,
it is often used for inductive inference as the model that allows
description of the data in the most concise manner is often one that
allows us to learn much from the data (it is useful) and should be
considered the best model. Researchers wishing to have a better
understanding of these concepts or indices more directly derived
from MDL (such as normalized maximum likelihood) are referred
to resources that we believe are accessible in part by focusing on
such concepts within SEM and IRT frameworks (Bonifay, 2015;
Bonifay & Cai, 2017; Preacher, 2003, 2006).

While there are practical considerations in evaluating fit propen-
sity for model selection, it is clear that fit propensity cannot simply
be ignored—parsimony is a crucial aspect of evaluating theories.
That a model better fits the right data is insufficient evidence if the
model also fits the wrong data. We hope to motivate researchers to
always consider parsimony and fit propensity and provide them
with the tools to do so.
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Appendix

Generation of Random Correlation Matrices

The original FORTRAN code for the MCMC algorithm was
provided by Kristopher Preacher (2003) and ported to R and
modified slightly by the authors. Let rk be a pðp� 1Þ=2 vector
of correlations at iteration k, where p is the number of observed
variables. In brief, this approach begins the MCMC chain with
the correlation matrix set to an identity matrix, (i.e., r0 ¼ 0).14

Candidate draws, are computed by rkþ1 ¼ rk þ cz, where c is a
step size, and z ¼ t1=p xffiffiffiffiffi

x0x
p , with x and t randomly drawn at each

iteration from an independent normal distribution, x�N pð0; IÞ,
and uniform distribution, t�unifð0; 1Þ. Candidate draws are
only rejected if they result in a nonpositive-definite matrix, or if
correlation values exceed allowable values (i.e., within 61). In
order to reduce these possibilities with large correlation matri-
ces, smaller step sizes are required, which in turn then requires
more iterations between draws to reduce autocorrelations. That
is, as in typical MCMC applications a number determines thin-
ning—or the number of iterations between saving random corre-
lation matrices—and only a subset of iterations (e.g., n = 10,000
out of 200,000) are saved. The step size (from .56 to .1) and
number of iterations (from 200,000 to 10 million) are preset
under the original algorithm for a range of observed variables
from three to approximately 16.

Our modifications of the code included an increase to a
default of 5 million iterations for the MCMC algorithm. Parallel
processing can be used by creatingm independent chains for gen-
erating correlation matrices. The total number of iterations is
held constant where possible by dividing the total number of iter-
ations and draws equally among the m chains. In the case of
many processing cores, this could lead to very few iterations per
chain. To prevent this, a minimum number of iterations per chain
is set at 10,000. In both cases, these options are modifiable by
passing a list to an additional argument, mcmc.args, and docu-
mentation on possible options is provided in the ockhamSEM
package.

Lewandowski et al. (2009) introduced the ability to generate
correlation matrices with the vine and onion methods, which are
faster than the MCMC algorithm. The MCMC algorithm may
still generate many correlation matrices that must be discarded
due to lack of positive definiteness. The vine method is based on
work by Joe (2006), in which partial correlations are generated
from a linearly transformed Beta distribution and transformed
into product moment correlations. The computations involved

can be illustrated using C-vines, which define the dependency
structure among the variables using a graphical model. We do
not pursue the vine method further due to the need to further
study involved tuning parameters that may affect the space for
the randomly generated matrices. The method we pursue in the
current article is the onion method which allows uniform sam-
pling “over the space of correlation matrices” (Lewandowski
et al., 2009, p. 1998). The onion method constructs random corre-
lation matrices recursively, starting with a single dimension and
adding additional dimensions in later steps. Lewandowski et al.
(2009) provide a detailed description of the method as it relates
to elliptical distributions. Either approach is computationally fast,
and these authors report generation of many (5,000) large correla-
tion matrices (e.g., 80 3 80), in only a few seconds (using com-
piled C code) or a minute or two (using Matlab). In the present
application, we use the clusterGeneration package (Qiu & Joe,
2015). As neither method requires iterations as does MCMC, par-
allel processing can be easily conducted by dividing the number
of generated correlation matrices amongm processing cores.

While we expect that most applications using the onion
method will use correlation matrices generated as-is, we have
also implemented the following ad-hoc procedure for restrict-
ing correlation matrix generation to the space of all positive
correlations. Let R be a generated correlation matrix. To ensure
all positive correlations, we compute a new correlation matrix
by eR ¼ :5ðRþ 1Þ, where 1 is a matrix of 1’s of conformable
dimensions. We offer no proof at the moment that this results
in uniform sampling from this data space, however, we note
that this approach in many cases results in similar conclusions
regarding fit propensity as the MCMC algorithm.
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14 Or a matrix with .5 correlations if only positive correlations are
desired, as in the original code.
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